Open Security Controller - Security Orchestration for OpenStack

Tarun Viswanathan
Platform Solution Architect
Intel

Manish Dave
Platform Architect
Intel
Notices and Disclaimers

- Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

- No computer system can be absolutely secure.

- Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

- Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

- © 2016 Intel Corporation.
SDI—The Application Defines the System

- The evolution to software-defined infrastructure

One application per system

Static perimeter-focused security hardware appliances

One application per virtual system

Partially automated security physical/virtual appliances

Applications define the system

Fully automated software-defined security

TRADITIONAL HARDWARE

ABSTRACTING THE HARDWARE

ABSTRACTING THE DATA CENTER
How can I provide consistent security across a multi-cloud data center environment.

Open Security Controller addresses this challenge.
Open Security Controller Key Design Goals

- **Centralized security policy management for a multi cloud environment.**
- **Automated provisioning, distribution, and delivery of security inside data center perimeter.**
- **Dynamic scale-out Security VNFs.**
- **No Lock-in Vendor agnostic open solution.**
- **Policies aligned with specific application workloads.**
- **Separation of duties to enable use of familiar tools.**
Orchestrating security policies with network provisioning across multiple virtual environments

Security Function Manager: Centralized management and separation of duties
- Virtualized Security Function Manager
- Security Management
- Physical Security Appliances

Security Controller: Security service automation and orchestration
- Security Functions Catalog
- Security Controller
- vIPS, vNGFW, vWAF, vADC
- Distributed Virtual Appliances

Virtualization Infrastructure Management: Abstracts compute, storage, and network
- SDN
 - OpenStack*
 - Kubernetes*
- MANO
 - OpenStack*
- Network virt.
- Compute virt.
- Data Center A
- Data Center B
- Data Center C
- Data Center D
OpenStack Micro-Segmentation Use Case

- Advanced threat protection for East-West traffic flows
OSC API Interaction Model

Applications, User Intent, and Policies

Cloud Apps

User Intent

Policies

GUI

1. NB Rest API

- Policy interface
- User intent
- Application intent

2. Rest API
 - Images, deployment, notifications, authentication

3. Rest API SFC Policy
 - Traffic redirection API
 - SFC policy API
 - Advanced visibility functionality (example 6 tuple visibility)

4. Rest API Web Sockets
 - Dynamic policy updates and mapping
 - Domain/sub domain updates and mapping
 - Control path agent: provisioning, de-provisioning, heartbeats, etc.
 - Data path agent: instrumentation and real time statistics

5. Rest API IPC

Open Security Controller

security Functions Catalog

Manager Plug-ins

VNF Agent Plug-ins

Business Logic

Service Dispatcher

Jobs Engine

H2 Database

SDN Controllers

NSX*

Virtual Infra

OpenStack*

Virtual Compute

Virtual Storage

Virtual Network

Virtualization Layer

Physical Infrastructure

Computing Hardware

Storage Layer

Network Hardware

- Lifecycle management
- Deployment specs, auto-scaling and HA
- Authentication
- Image services
- Notification for events
- Role based access control
Customer PoC: Health industry IT services provider

- Customer has to adhere to HIPAA regulatory requirements
- Existing solution was based on DC edge devices.
- Customer wanted to get to a dynamic policy based security solution for East-West traffic inspection.
Customer Deployment Architecture

Current: Topology Based Security

- Firewall
- Intrusion Prevention Systems/Intrusion Detection Systems
- Application Delivery Controller
- Top of Rack Switch

Future: Dynamic Policy Based East-West Security

- Security Function Manager
- Security Controller
- Top of Rack Switch
- X86 server

- Security between Tenants and Tiers
- Latency Goes Down
- Granular Control and Scalability

Granular Control and Scalability

East-west Traffic

High Latency

East-west Traffic

Physical Appliances

X86 Server

App

KVM

openstack

App

App

App

App

vIPS

vADC

App
Customer PoC: Large financial services provider

- Customer has to adhere to PCI regulatory requirements
- Customer wanted to get to a Risk Based automated security policy management capability for their Openstack environment
Customer deployment Workflow

One Time Setup
1. Openstack Connector
2. Create Security Services
 a) Policy manager Plugins for NGFW 1, NGFW 2
3. Configure Security Services
 a) Distributed Appliance
 b) Deployment Specifications

Protection Policy
1. Define Global Risk based Sec-Groups
2. All Policy managers dynamically updated
3. Automated traffic redirection via SDN Plugin

Automated Zero-Trust Security
Spins workload up or down
Network flows automatically updated to redirect traffic to security service chain
DEMO

Automated Security Services Orchestration for Openstack
Demo Topology

- Open Security Controller
 - Security Manager Plugins
 - NGFW Manager
 - Security Management
 - SDN Controller
 - SDN Plugin
 - Virtualization Connector
 - Attacker VM
 - Protected Web VM
 - OpenStack Compute Node
 - OpenStack Controller
Virtualization Connectors

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Controller IP</th>
<th>Provider IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operstack-East</td>
<td>OPENSTACK</td>
<td></td>
<td>10.71.85.177</td>
</tr>
<tr>
<td>Operstack-West</td>
<td>OPENSTACK</td>
<td></td>
<td>10.71.80.135</td>
</tr>
</tbody>
</table>

Security Groups

<table>
<thead>
<tr>
<th>Name</th>
<th>Tenant</th>
<th>Member</th>
<th>Services</th>
<th>Disabled</th>
<th>Last Job Status</th>
</tr>
</thead>
</table>
Apply: Risk Based Approach

1. Identify workload which needs micro segmentation
2. Identify security controls to mitigate risks (vIPS, vNGFW, vADC)
3. Automate Security Controls orchestration
Call to Action

- Current Status
 - POC with early adopter customers / Security VNF’s
 - Open Security Controller available as Opensource ~ Mid 2017 compatible with few Security VNF and SDN vendors

- Call to Action
 - Contact us to get engaged in the community: Email: manish.dave@intel.com or Tarun@intel.com
 - Additional Information: www.intel.com/osc